Essential Twisted Surfaces in Alternating Link Complements
نویسنده
چکیده
Checkerboard surfaces in alternating link complements are used frequently to determine information about the link. However, when many crossings are added to a single twist region of a link diagram, the geometry of the link complement stabilizes (approaches a geometric limit), but a corresponding checkerboard surface increases in complexity with crossing number. In this paper, we generalize checkerboard surfaces to certain immersed surfaces, called twisted checkerboard surfaces, whose geometry better reflects that of the alternating link in many cases. We describe the surfaces, show that they are essential in the complement of an alternating link, and discuss their properties, including an analysis of homotopy classes of arcs on the surfaces in the link complement.
منابع مشابه
Small Curvature Surfaces in Hyperbolic 3-manifolds
In a paper of Menasco and Reid, it is conjectured that there exist no hyperbolic knots in S3 for which the complement contains a closed embedded totally geodesic surface. In this note, we show that one can get ”as close as possible” to a counter-example. Specifically, we construct a sequence of hyperbolic knots {Kn} with complements containing closed embedded essential surfaces having principal...
متن کاملSmooth Surfaces with Non-simply-connected Complements
We give two constructions of surfaces in simply-connected 4-manifolds with non simply-connected complements. One is an iteration of the twisted rim surgery introduced by the first author [7]. We also construct, for any group G satisfying some simple conditions, a simply-connected symplectic manifold containing a symplectic surface whose complement has fundamental group G. In each case, we produ...
متن کاملNoncompact Fuchsian and quasi-Fuchsian surfacesin hyperbolic 3--manifolds
Given a noncompact quasi-Fuchsian surface in a finite volume hyperbolic 3–manifold, we introduce a new invariant called the cusp thickness, that measures how far the surface is from being totally geodesic. We relate this new invariant to the width of a surface, which allows us to extend and generalize results known for totally geodesic surfaces. We also show that checkerboard surfaces provide e...
متن کاملThe Thurston Norm, Fibered Manifolds and Twisted Alexander Polynomials
Every element in the first cohomology group of a 3–manifold is dual to embedded surfaces. The Thurston norm measures the minimal ‘complexity’ of such surfaces. For instance the Thurston norm of a knot complement determines the genus of the knot in the 3–sphere. We show that the degrees of twisted Alexander polynomials give lower bounds on the Thurston norm, generalizing work of McMullen and Tur...
متن کاملNon-parallel Essential Surfaces in Knot Complements
We show that if a knot or link has n thin levels when put in thin position then its exterior contains a collection of n disjoint, non-parallel, planar, meridional, essential surfaces. A corollary is that there are at least n/3 tetrahedra in any triangulation of the complement of such a knot.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014